Topic 3Systems of linear equations

HW 3 Topic -Systems of linear equations

Def: A linear equation in the n variables $x_{1}, x_{2}, \ldots, x_{n}$ is an equation of the form

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=b \tag{*}
\end{equation*}
$$

where $a_{1}, a_{2}, \ldots, a_{n}, b$ ace constant real numbers.
The solution space of the above equation ($*$) consists of the set of all $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ that solves the equation.

Ex: $\quad 3 x-y=6$
is a linear equation in two variables x, y.

pink line is the solution space

Another way to describe the
Solution space to $3 x-y=6$
is as the following set:

$$
\left.\begin{array}{rl}
& \{\left.\binom{x}{y} \right\rvert\, \underbrace{3 x-y=6}_{y=3 x-6} \text { and } x, y \in \mathbb{R}\} \\
= & \{\left.\binom{x}{3 x-6} \right\rvert\, \underbrace{x \text { is a real number }}_{x \in \mathbb{R}}\} \\
= & \{\underbrace{\binom{0}{-6}}, \underbrace{\binom{-1}{-9}}_{x=-1}, \underbrace{\binom{\pi}{3 \pi-6}}_{x=\pi}, \ldots
\end{array}\right\}
$$

Ex: Some more linear equations:

$$
\begin{aligned}
& \sqrt{2} w-\frac{1}{2} z=0 \\
& 10 x+1000 y+\frac{1}{2} z-\frac{1}{3} w=5 \\
& x_{1}+10 x_{2}-30 x_{3}=\frac{1}{2}
\end{aligned}
$$

Ex: Some non-linear equations:

$$
\begin{aligned}
& 2 y+x^{2}=7 \\
& 5 \cos (x)+37 x=2
\end{aligned}
$$

Def: A system of m linear equations in the n unknowns $x_{1}, x_{2}, \ldots, x_{n}$ is a set of m equations of the form

$$
\begin{aligned}
& \text { quations of the } \\
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
& \vdots \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{aligned}
$$

Where the $a_{i j}$ are constant real
The augmented matrix for $(*)$ is

$$
\begin{aligned}
& \quad\left(\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & & & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{2}
\end{array}\right) \\
& \begin{array}{cccc}
x_{1} & x_{2} & x_{n} & \\
\text { column } & \text { column } & \text { column } & \text { the } \begin{array}{l}
\text { resents } \\
\text { sign }
\end{array}
\end{array}
\end{aligned}
$$

The solution space of the system ($*$) consists of all the $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ that simultaneously solve all m equations.
That is, the common solutions to all m equations.

Ex:
$x+2 y=3$
system of

$$
4 x+5 y=6
$$

and $n=2$ unknowns
Augmented matrix: $(\underbrace{1}_{x} \quad \begin{array}{cc|c}1 & 2 & 3 \\ 4 & 5 & 6\end{array})$

Solution space:

The solution space for

$$
\begin{aligned}
& x+2 y=3 \\
& 4 x+5 y=6
\end{aligned}
$$

consists of just one point $(x, y)=(-1,2)$. So the solution space is the set

$$
\left\{\begin{array}{l}
\text { set } \\
\{(-1,2)\}
\end{array}\right.
$$

Ex: Consider the system

$$
\left.\begin{array}{l}
x+2 y=3 \\
4 x+8 y=6
\end{array}\right] \begin{aligned}
& \text { system of } m=2 \\
& \text { linear equations and } \\
& n=2 \text { unknowns }
\end{aligned}
$$

| Augmented |
| :--- | :--- | :--- |
| matrix |\(\left(\begin{array}{ll}1 \& 2 \\

4 \& 8\end{array}\right)\)

Solution space

Ex:

$$
x+2 y=3
$$

$$
4 x+8 y=12
$$

Augmented
matrix $\left(\begin{array}{ll|l}1 & 2 & 3 \\ 4 & 8 & 12\end{array}\right)$

Solution space

It's the same line twice.

Solution space for the system is the line $x+2 y=3$, or
$\left.\left\{\begin{array}{l}x \\ y\end{array}\right) \left\lvert\, \begin{array}{c}x+2 y=3 \\ x, y \in \mathbb{R}\end{array}\right.\right\}$
$=\left\{\left.\binom{3-2 y}{y} \right\rvert\, y \in \mathbb{R}\right\}$ $=\{\underbrace{\binom{3}{0}}_{y=0}, \underbrace{\binom{5}{-1}}_{y=-1}$, $\underbrace{\binom{1}{1}}_{y=1}, \ldots\}$

Ex:

$$
\left.\begin{array}{r}
x+y+2 z=9 \\
-3 z=1 \\
2 x+6 y-5 z=0
\end{array}\right] \begin{aligned}
& \text { system of } \\
& m=3 \\
& \text { equations } \\
& \text { and } \\
& n=3 \\
& \text { unknowns }
\end{aligned}
$$

Augmented Matrix

$$
\left.\frac{\qquad \text { Augmented }}{\text { Mlatrix }} \begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
2 & 0 & -3 & 1 \\
-1 & 6 & -5 & 0
\end{array}\right)
$$

If you drew the picture it would be three planes in Sd. Later we will see
 that the solution space (which is where the 3 planes intersect) is just one point $(x, y, z)=(1,2,3)$
(made up drawing)

Ex:

$$
\left.\begin{array}{rl}
x+4 y-2 w+z & =1 \\
2 x & =3 \\
14 y-12 w+7 z & =0
\end{array}\right] \begin{gathered}
\text { system } \\
w i t h \\
m=3 \\
\text { equations } \\
\text { and } \\
n=4 \\
\text { unknowns }
\end{gathered}
$$

Augmented matrix

$$
\left(\begin{array}{cccc|c}
1 & 4 & -2 & 1 & 1 \\
2 & 0 & 1 & 0 & 3 \\
0 & \underbrace{14}_{x} & \underbrace{-12}_{w} & 7 & 0
\end{array}\right)
$$

Now we want to learn how to solve systems of linear equations We will learn a method called Gaussian elimination or row reduction. We need some definitions and terminology first

Def: Given a system of linear equations there are three operations that we call elementary row operations

They are:
(1) Multiply one of the rows/equations by a non-zero constant.
(2) Interchange two rows/equations.
(3) Add a multiple of one row/equation to a different row/ equation.

$$
\text { Ex: }\binom{\text { Multiply a row/equation by a }}{\text { non-zero constant }}
$$

Equation viewpoint

$$
\begin{aligned}
& \text { Equation viewpoint } \\
& \begin{array}{l}
3 x-y+z=1 \\
5 x+2 z=2 \\
x+y+z=-1
\end{array} \\
& \hline R_{2} \rightarrow R_{2} \\
& \hline
\end{aligned} \begin{gathered}
3 x-y+z=1 \\
15 x+6 z=6 \\
x+y+z=-1
\end{gathered}
$$

Augmented matrix viewpoint

$$
\left(\begin{array}{ccc|c}
3 & -1 & 1 & 1 \\
5 & 0 & 2 & 2 \\
1 & 1 & 1 & -1
\end{array}\right) \xrightarrow{3 R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
3 & -1 & 1 & 1 \\
15 & 0 & 6 & 6 \\
1 & 1 & 1 & -1
\end{array}\right)
$$

Ex: (Interchanging two rous/equations)
Equation viewpoint

$$
\begin{aligned}
x_{1}-x_{2}+x_{3} & =5 \\
2 x_{2} & =7 \\
x_{2}-x_{3} & =6 \\
x_{3} & =1
\end{aligned} \xrightarrow{R_{1} \leftrightarrow R_{3}} \begin{array}{r}
x_{2}-x_{3}=6 \\
2 x_{2}=7 \\
x_{1}-x_{2}+x_{3}=5 \\
x_{3}=1
\end{array}
$$

Augmented matrix viewpoint

$$
\left.\xrightarrow\left[{\left(\begin{array}{ccc|c}
1 & -1 & 1 & 5 \\
0 & 2 & 0 & 7 \\
0 & 1 & -1 & 6 \\
0 & 0 & 1 & 1
\end{array}\right) \xrightarrow{\text { Augmented matrix }}\left(\begin{array}{ccc|c}
0 & 1 & -1 & 6 \\
0 & 2 & 0 & 7 \\
1 & -1 & 1 & 5 \\
0 & 0 & 1 & 1
\end{array}\right.}\right)\right]{\left(\begin{array}{cc}
\\
R_{1}
\end{array}\right)}
$$

Ex: $\left(\begin{array}{l}\text { Adding a multiple of one } \\ \text { row/equation to a different } \\ \text { row/equation }\end{array}\right)$
equation viewpoint

$$
\begin{aligned}
x-y+z & =3 \\
2 x+y+z & =1 \\
y+2 z & =10
\end{aligned}
$$

$$
\begin{aligned}
x-y+z & =3 \\
3 y-z & =-5 \\
y+2 z & =10
\end{aligned}
$$

$$
-2 R_{1}+R_{2} \rightarrow R_{2}
$$

$$
\begin{aligned}
& -2(x-y+z=3) \leftarrow-2 R_{1} \\
& +2 x+y+z=1) \leftarrow R_{2} \\
& \hline O x+3 y-z=-5
\end{aligned}
$$

Augmented matrix viewpoint

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & -1 & 1 & 3 \\
2 & 1 & 1 & 1 \\
0 & 1 & 2 & 10
\end{array}\right) \\
& \underset{\substack{ \\
-2 R_{1}+R_{2} \rightarrow R_{2}}}{ }\left(\begin{array}{ccc|c}
1 & -1 & 1 & 3 \\
0 & 3 & -1 & -5 \\
0 & 1 & 2 & 10
\end{array}\right)
\end{aligned}
$$

$$
\begin{gathered}
\left(\begin{array}{lll|l}
-2 & 2 & -2 & -6
\end{array}\right) \&-2 R_{1} \\
+\left(\begin{array}{lll|l}
2 & 1 & 1 & 1
\end{array}\right) \Leftarrow R_{2} \\
\hline\left(\begin{array}{llll}
0 & 3 & -1 & -5
\end{array}\right) \Leftarrow \text { new } R_{2}
\end{gathered}
$$

Theorem: Applying an elementary row operation to a system of linear equations does not change the solution space of the system

Ex:
system

$$
x+y=1
$$

$$
x-y=0
$$

augmented matrix

$$
\left(\begin{array}{cc|c}
1 & 1 & 1 \\
1 & -1 & 0
\end{array}\right)
$$

(*)

The solution space for (*) is

$$
\left\{\left(\frac{1}{2}, \frac{1}{2}\right)\right\}
$$

Let's apply an elementay row opecation to the system (*).
$(* *)$ corresponds to

$$
\begin{array}{r}
x+y=1 \\
-2 y=-1
\end{array}
$$

Drawing (**) we have

So the solution space for $\left(*^{*}\right)$ is also $\left\{\left(\frac{1}{2}, \frac{1}{2}\right)\right\}$.

We see that the elementary row operation didn't change the solutions.

Def: If a row of a matrix does not consist entirely of zeros then the leading entry in that row is the first non-zero entry when scanning from left to right
$E x_{0}^{p}$

$$
A=\left(\begin{array}{cccc}
5 & 0 & 2 & 3 \\
0 & 0 & -1 & 2 \\
0 & -3 & 1 & 10 \\
0 & 0 & 0 & 0
\end{array}\right) \longleftarrow \text { ๕ row } 1
$$

leading entry in row 1 is 5 leading entry in row 2 is -1 leading entry in row 3 is -3
There is no leading entry in row 4 since row 4 consists entirely of zeros.

Def: A matrix is in row echelon
form if the following three conditions are true:
(1) If there are any rows that consist entirely of zeros, then those rows are grouped together at the bottom of the matrix.
(2) In any two consecutive rows that do not consist entirely of zeros, then the leading entry in the lower row occurs farther to the right than the leading entry in the higher row.
(3) If a row does not consist entirely of zeros, then the leading entry of that row is 1 .
$E x:$
$\left(\begin{array}{cccc}1 & 5 & 10 & 7 \\ 0 & -2 & 1 & \frac{1}{2}\end{array}\right)$
(1) $\sqrt{ }$
leading entries
(2) V
(3) $X \leftarrow$ are circled
This matrix is not in entry $\operatorname{in}_{\text {row }} 2$ is not 1 row echelon form.

$$
\left(\begin{array}{cccc}
1 & 5 & 10 & 7 \tag{1}\\
0 & 0 & 1 & \frac{1}{2}
\end{array}\right)
$$

(3) \checkmark

This matrix is in row echelon form

Matrix is not in row echelon form.

Ex:

$$
\left(\begin{array}{ccccc}
(1) & 5 & 7 & 6 \\
(1) & 0 & 3 & -1 & 5 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 7 & 3
\end{array}\right) \& \begin{aligned}
& x \\
& 2 \\
& 3
\end{aligned}
$$

not in row echelon form

Ex:

$$
\left.\left.\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)\right\} \begin{array}{l}
\text { leading } \\
\text { entries } \\
\text { circled }
\end{array}\right\} \begin{aligned}
& \text { rows } \\
& \text { of } \\
& \text { zeros }
\end{aligned}
$$

(1) V This matrix is in
(2) row echelon form
(3) $\sqrt{ }$

Def: Suppose you have an augmented matrix for a system of linear equations.
Suppose you use elementary row operations to put the left side of the matrix into row echelon form.

The variable corresponding to the leading entry of a row is called a leading variable (or
 pivot variable).
Any variable that doesn't occur as a leading variable is called a free variable
$\underline{E x:}\left(\begin{array}{ccc|c}\left.\begin{array}{ccc}1 & 0 & 1 \\ \text { left side } & 3 \\ 0 & 1 & 1\end{array}\right) \\ 0 & 0 & 0 & 0\end{array}\right)$ is in
row echelon form
leading variables are circled
Suppose this corresponds to
X

$$
\begin{aligned}
+z & =3 \\
y+z & =2 \\
0 & =0
\end{aligned} \leftarrow 0 x+0 y+0 z=0
$$

leading variables are x and y. Free variable is Z
Free variables are the variables that aren't leading variables

Method to solve a system of linear equations (called Gaussian elimination)
(1) Use elementary row operations to put the left side of the augmented matrix for the system into row echelon form.
(2)
case (a): If one of the equations corresponding to the reduced augmented matrix is $O=c$ where $c \neq 0$, then the system has no solutions and we say that the system is inconsistent.
Case (b): If case (a) doesn't occur we use back-substitution to find all the solutions to the syr stem.

To do this:
(i) Write down the equations corresponding to the augmented reduced matrix.
(ii) Solve the equations for the leading variables.
(iii) Assign each free variable a new name as these variables can take on any value.
(iv) Beginning with the bottom/ last equation and working upward, successively substitute each equation into the equation above it.

Ex: Solve

$$
\left[\begin{array}{r}
x+y+2 z=9 \\
2 x+4 y-3 z=1 \\
3 x+6 y-5 z=0
\end{array}\right.
$$

we want a here
male these into zeros

$$
\left(\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
2 & 4 & -3 & 1 \\
3 & 6 & -5 & 0
\end{array}\right)
$$

$$
\xrightarrow[\uparrow]{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
0 & 2 & -7 & -17 \\
3 & 6 & -5 & 0
\end{array}\right)
$$

$\left(\begin{array}{lll|l}-2 & -2 & -4 & -18\end{array}\right) \leftarrow-2 R_{1}$

$$
\begin{array}{r}
\left(\left.\begin{array}{rrrr}
-2 & -2 & -4 & 1
\end{array} \frac{\left(\left.\begin{array}{ccc}
2 & 4 & -3
\end{array} \right\rvert\,\right.}{(0} 42-7 \right\rvert\,-17\right)
\end{array} \text { new } R_{2}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
0 & 2 & -7 & -17 \\
3 & 6 & -5 & 0
\end{array}\right) \\
& \xrightarrow[4]{-3 R_{1}+R_{3} \rightarrow R_{3}}\left(\begin{array}{cc|c}
1 & 1 \sqrt{2} & 9 \\
0 & 2 & -7 \\
0 & -17 \\
3 & -17 \\
-27
\end{array}\right) \\
& (-3-3-6 \mid-27) \leftarrow-3 R_{1} \\
& +\left(\begin{array}{llll}
3 & 6 & -51 & 0
\end{array}\right) \leftarrow R_{3} \\
& \begin{array}{lll|l}
\left(\begin{array}{llll}
0 & 3 & -11 & -27
\end{array}\right) & \text { new } R_{3}
\end{array} \\
& \xrightarrow{\frac{1}{2} R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\
0 & 3 & -11 & -27
\end{array}\right) \\
& \text { Make this } \\
& \text { zero }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\
0 & 3 & -11 & -27
\end{array}\right) \\
& \xrightarrow[\hat{r}]{-3 R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{cc|c|c}
1 & 1 & 2 & 9 \\
0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\
0 & 0 & -\frac{1}{2} & -\frac{3}{2}
\end{array}\right) \\
& \left(\begin{array}{lll|l}
0 & -3 & \frac{21}{2} & \frac{51}{2}
\end{array}\right) \sigma-3 R_{2} \\
& +\left(\begin{array}{llll}
0 & 3 & -11 & \mid-27
\end{array}\right) \longleftarrow R_{3} \\
& \left(\begin{array}{lll|l}
0 & 0 & -\frac{1}{2} & \left.-\frac{3}{2}\right) \\
\text { new } R_{3}
\end{array}\right. \\
& \xrightarrow{-2 R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
\begin{array}{ccc}
1 & 1 & 2 \\
\text { left side is } \\
\text { row echelon } & 9 \\
0 & 1 & \frac{-7}{2}
\end{array} & \frac{-17}{2} \\
0 & 0 & 1 & 3
\end{array}\right)
\end{aligned}
$$

Now turn the reduced matrix back into equations.

$$
\begin{aligned}
x+y+2 z & =9 \\
y-\frac{7}{2} z & =-\frac{17}{2} \\
z & =3
\end{aligned}
$$

(1) leading
(2) variables
(2) are x, y, z
(3) There are no free variables

Solve in terms of leading variables.

$$
\begin{align*}
& x=9-y-2 z \tag{1}\\
& y=\frac{-17}{2}+\frac{7}{2} z \tag{2}\\
& z=3 \tag{3}
\end{align*}
$$

Now we back-substitute starting at the last equation and going upwards. $\quad \square$
(3) gives $z=3$

$$
\begin{aligned}
& \text { gives } \\
& \begin{aligned}
y=-\frac{17}{2}+\frac{7}{2} z & =-\frac{17}{2}+\frac{7}{2}(3) \\
& =2
\end{aligned}
\end{aligned}
$$

So, $y=2$
(1) gives

$$
x=9-y-2 z
$$

So $x=1$
Thus, the only solution to the system is

$$
\begin{aligned}
& \text { he system } \\
& \begin{array}{l}
x=1 \\
y=2 \\
z=3
\end{array} \text { or }(x, y, z)=(1,2,3)
\end{aligned}
$$

Let's check the answer to make sure it works

Original
System

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { System } \\
x+y+2 z=9 \\
2 x+4 y-3 z=1 \\
3 x+6 y-5 z=0
\end{array}\right\} \begin{array}{l}
1+2+2(3)=9 \\
2(1)+4(2)-3(3)=1 \\
3(1)+6(2)-5(3)=0 \\
x=1, y=2, z=3 \text { works }
\end{array} \text { }
\end{aligned}
$$

This is the only solution
(*) to the system.
There is no other solution

Ex: Solve

$$
\begin{aligned}
& -2 b+3 c=1 \\
& 3 a+6 b-3 c=-2 \\
& 6 a+6 b+3 c=5 \\
& \text { want } \\
& \text { a } 1 \\
& \text { here } \\
& \left(\begin{array}{ccc|c}
0 & -2 & 3 & 1 \\
3 & 6 & -3 & -2 \\
6 & 6 & 3 & 5
\end{array}\right) \\
& \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{rrr|r}
3 & 6 & -3 & -2 \\
0 & -2 & 3 & 1 \\
6 & 6 & 3 & 5
\end{array}\right) \\
& \xrightarrow{\frac{1}{3} R_{1} \rightarrow R_{1}}\left(\begin{array}{ccc|c}
1 & \sqrt{2} & -1 & -2 / 3 \\
0 & -2 & 3 & 1 \\
6 & 6 & 3 & 5
\end{array}\right) \\
& \xrightarrow{-6 R_{1}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & 2 & -1 & -2 / 3 \\
0 & -2 & 3 & 1 \\
0 & -6 & 9 & 9
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 2 & -1 & -2 / 3 \\
0 & -2 & 3 & 1 \\
0 & -6 & 9 & 9
\end{array}\right) \quad\left[\begin{array}{c}
\text { put a } \\
1 \\
\text { here }
\end{array}\right. \\
& \xrightarrow{-\frac{1}{2} R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 2 & -1 & -2 / 3 \\
0 & 1 & -3 / 2 & -1 / 2 \\
0 & -6 & 9 & 9
\end{array}\right) \underset{\substack{\text { make } \\
\text { this } \\
\text { zero }}}{ }
\end{aligned}
$$

Now we turn it back into equations.

We get

$$
\begin{aligned}
a+2 b-c & =-2 / 3 \\
b-3 / 2 c & =-1 / 2 \\
0 & =6
\end{aligned}
$$

\rightarrow Since we have $0=6$ in the last equation this tells us that the original system is inconsistent that is there are no solutions to the system.

Ex: Solve

$$
\begin{aligned}
& 5 x_{1}-2 x_{2}+6 x_{3}=0 \\
& -2 x_{1}+x_{2}+3 x_{3}=1 \\
& \text { puts } \\
& \left(\begin{array}{ccc|c}
{[5} & -2 & 6 & 0 \\
-2 & 1 & 3 & 1
\end{array}\right) \\
& \xrightarrow[\text { Cold have }]{2 R_{2}+R_{1} \rightarrow R_{1}}\left(\underset{\sim}{1} \begin{array}{ccc|c}
1 & 0 & 12 & 2 \\
-2 & 1 & 3 & 1
\end{array}\right) \\
& \text { Could have } \\
& \text { instead } \\
& \text { done } \\
& \xrightarrow{\frac{1}{5} R_{1} \rightarrow R_{1}} 2 R_{1}+R_{2} \rightarrow R_{2}\left(\begin{array}{lll|l}
1 & 0 & 12 & 2 \\
0 & 1 & 27 & 5
\end{array}\right) \\
& \text { this left side }
\end{aligned}
$$

is in row echelon form

Turn it back into equations.
x_{1}

$$
\begin{array}{r}
+12 x_{3}=2 \\
\left(x_{2}\right)+27 x_{3}=5 \tag{2}
\end{array}
$$

leading variables are x_{1}, x_{2}.
free variable is x_{3}
Solve in terms of leading variables.

$$
\begin{align*}
& x_{1}=2-12 x_{3} \tag{1}\\
& x_{2}=5-27 x_{3} \tag{2}
\end{align*}
$$

Give the free variables a new name.
Let $x_{3}=t$
Now backsubstitute.
(2) gives

$$
\begin{align*}
& x_{2}=5-27 x_{3} \\
& x_{2}=5-27 t \tag{3}
\end{align*}
$$

(1) gives

$$
\begin{aligned}
& x_{1}=2-12 x_{3} \\
& x_{1}=2-12 t
\end{aligned}
$$

Answer

$$
\begin{aligned}
& x_{1}=2-12 t \\
& x_{2}=5-27 t \\
& x_{3}=t
\end{aligned}
$$

where
t can
be any
real number
In finitely many solutions, for example

$$
\begin{aligned}
& t=1 \\
& x_{1}=2-12=-10 \\
& x_{2}=5-27=-22 \\
& x_{3}=1
\end{aligned}
$$

$$
\begin{aligned}
& t=0 \\
& x_{1}=2-0=2
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=2 \\
& x_{2}=5-0=5
\end{aligned}
$$

$$
x_{3}=0
$$

Ex: Solve

$$
\left[\begin{array}{r}
x_{1}+3 x_{2}-2 x_{3}+2 x_{5}=0 \\
2 x_{1}+6 x_{2}-5 x_{3}-2 x_{4}+4 x_{5}-3 x_{6}=-1 \\
5 x_{3}+10 x_{4}+15 x_{6}=5 \\
+8 x_{4}+4 x_{5}+18 x_{6}=6
\end{array}\right]
$$

make these zeros)

$$
\begin{aligned}
& \xrightarrow{2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cccccc|c}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & -1 & -2 & 0 & -3 & -1 \\
0 & 0 & 5 & 10 & 0 & 15 & 5 \\
2 & 6 & 0 & 8 & 4 & 18 & 6
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{-2 R_{1}+R_{4} \rightarrow R_{4}}\left(\begin{array}{cccccc|c}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & -1 & -2 & 0 & -3 & -1 \\
0 & 0 & 5 & 10 & 0 & 15 & 5 \\
0 & 0 & 4 & 8 & 0 & 18 & 6
\end{array}\right)^{(14)} \\
& \text { make this a } 1 \\
& \xrightarrow{-R_{2} \rightarrow R_{2}}\left(\begin{array}{cccccc|c}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 3 & 1 \\
0 & 0 & 5 & 10 & 0 & 15 & 5 \\
0 & 0 & 4 & 8 & 0 & 18 & 6
\end{array}\right) \\
& \text { make these zeros } \\
& \xrightarrow[-4 R_{2}+R_{4} \rightarrow R_{4}]{-5 R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{cccccc|c}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 6 & 2
\end{array}\right) \\
& \xrightarrow{R_{3} \leftrightarrow R_{4}}\left(\begin{array}{cccccc|c}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 6 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \text { make this a } 1
\end{aligned}
$$

$$
\xrightarrow{\frac{1}{6} R_{3} \rightarrow R_{3}}(\underbrace{\left.\begin{array}{cccccc|c}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 / 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)}_{\text {this left side is }}
$$

Turning this back into equations gives:

$$
\begin{aligned}
&\left(x_{1}+3 x_{2}-2 x_{3}+2 x_{5}\right.=0 \\
& x_{3}+2 x_{4}+3 x_{6}=1 \\
& x_{6}=1 / 3 \\
& 0=0 \\
& \text { can drop the last equation }
\end{aligned}
$$

leading variables are x_{1}, x_{3}, x_{6} free variables are x_{2}, x_{4}, x_{5}

Solve for the leading variables:

$$
\begin{align*}
& x_{1}=-3 x_{2}+2 x_{3}-2 x_{5} \tag{1}\\
& x_{3}=1-2 x_{4}-3 x_{6} \tag{2}\\
& x_{6}=1 / 3 \tag{3}
\end{align*}
$$

Give the free variables a new name:

$$
\begin{aligned}
& x_{2}=t \\
& x_{4}=u \\
& x_{5}=w
\end{aligned}
$$

Back substitute:
(3) gives $x_{6}=1 / 3$
(2) gives

$$
\begin{aligned}
x_{3} & =1-2 x_{4}-3 x_{6} \\
& =1-2 u-3\left(\frac{1}{3}\right)=-2 u \\
x_{3} & =-2 u
\end{aligned}
$$

(1) gives

$$
\begin{aligned}
x_{1} & =-3 x_{2}+2 x_{3}-2 x_{5} \\
& =-3 t+2(-2 u)-2 \omega \\
& =-3 t-4 u-2 \omega \\
x_{1} & =-3 t-4 u-2 \omega
\end{aligned}
$$

Solutions:

$$
\begin{aligned}
& x_{1}=-3 t-4 u-2 w \\
& x_{2}=t \\
& x_{3}=-2 u \\
& x_{4}=u \\
& x_{5}=w \\
& x_{6}=1 / 3
\end{aligned}
$$

where t, u, and w can be any real numbers

So we have an infinite number of solutions.
For example, if $t=2, u=-3$, and $w=0$ then

$$
\begin{aligned}
& \text { then } \\
& x_{1}=-3(2)-4(-3)-2(0)=6 \\
& x_{2}=2 \\
& x_{3}=-2(-3)=6 \\
& x_{4}=-3 \\
& x_{5}=0 \\
& x_{6}=1 / 3
\end{aligned}
$$

is one of the infinite number of solutions.

Theorem: A system of linear equations has either
(i) no solutions
(ii) exactly one solution or (iii) infinitely many solutions

